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In this paper we discuss systems of equations of the following type 

where A, B, and Lii are given functions of the variables uk, and the 

matrices 11 A”ii 11 and 11 Lij 11 are positive definite: i.e. for any-values 
of zi not simu taneously zero the following inequalities are fulfilled 

AMijzisj > 0, LijZiZj > 0 

(In the present paper repeated indices denote sumnation). Godunov has 
demonstrated how the equations of one-dimensional gas dynamics [ll, the 
equations of magnetohydrodynamics and several other systems of interest 
can be reduced to this form. 

The matrix of the dissipation coefficients Lij is not assumed sym- 

metrical in this paper. Tbe asymetry of the matrix Lij may be due to the 
magnetic field. It is easy to see that under these conditions, system (1) 
is evolutionary in the sense of [2]. It is possible to show, moreover, 
that the system is dissipative in the sense of [3], i.e. any solution of 
the linearized system of the form e i( kx -tit) , k real, (and therefore any 
solution -Nhich may be expanded as a Fourier integral) tends to zero when 
t - co. 

‘lhe following theorem is valid for systems of type (1). 

Theorear. Suppose ao(Q is one of the velocities of propagation of 

small disturbances, and it is a simple root of the characteristic equa- 
tion 

1 B”ij - aA”ij 1 = 0 (2) 

950 
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and let dao: # 0 in the corresponding simple wave, i.e. 

&a = (aa, / dUJ da, #= 0 

for duj determined by the systems of equations 

(B”ij - aarl”ij) daj = 0 (3) 

Then, if U is close to a,(ak+), whilst U> eo(uk+lt where uk+ is some 

selection of variables, then for system (1) there exists a solution of 
the type uk = uk(x - Ut), taking on values of ukt at x = a, whilst when 
x=- OD the values of uk’- are close to uk+. The values uk- satisfy the 

system of relations 

B’< (%-) - UA’, (uk-) = B’c (uR+) - UA’i (u”K) ECU (i = 1, , , . n) (4) 

which in the neighborhood of values of uk+ determine uniquely the values 

of UK- # l.Q+. 

If all the L . . - 0 but the cosine of the angle between the vectors 
{Lijt j) and {z ijldoes not tend to zero at any values of z i, the continu- 

ous solution indicated above tends to a discontinuous one 

Q (s - Ut) = Uk+ for z-UUt>h 

uK (z - Ut) = u; - for X-UUt<b 

If we do not insist on demanding finiteness of the cosine of the angle 

between the vectors {Lijz j) and (t i} we can make L, . tend to zero in such 
a manner that the solution will not reduce to the a Ao ve discontinuous 
solution and the width of the region within which at least one ui differs 

from uk+ and “k- by a greater amount than some fixed value 6, may actually 

tend to infinity. 

This theorem is close in its content to a theorem proved by Liubarskii 
[4] who studied the more general systems of equations of the hyperbolic 
type. However, when examining a system of equations of type (1) for the 
existence of the above described continuous solutions it is essential to 
fulfill a smaller number of supplementary conditions imposed on the 
system and on the given solution than in the case discussed by Liubarskii. 
In particular we do not require that the dispersion equation of the 
linearized system D(io, ik) = DfvU, -v) = 0, in which the variables have 
been changed to U = - o/k, v = - ik have only real roots v for a given 
value of Il. This condition may be unfulfilled for cases where there is a 
fairly high degree of asymetry of the matrices of the dissipative 
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coefficients L... Thus, for instance, according to [5] in which the 

structure of a'kagnetohydrodynamic shock wave was studied, when the 

mechanism of dissipation is given by the generalized Ohm's law this con- 

dition is not satisfied in a rarefied plasma situated in a strong magnetic 

field. 

The proof of the above theorems is based on an extension of [6,7,8]. 

We now deal with the continuous solutions of system (1) which depend 

on < = Ut - x. These solutions satisfy a system of ordinary differential 

equations [1,6] 

Lij 2 = pti, P z UA - B f CjUj (5) 

which are obtained from Equation (1) by integrating with respect to <. On 

each integral curve of system (5) the inequality dP/dc A 0 is fulfilled. 
Actually [1,6] 

dP duj dui duj 
- =P’jF= LijTx>O 
4 

whilst the equality will only 

zero, i.e. at singular points 

singular points of system (5) 

identical with Equations (4). 

hold when all the derivatives duk/d< are 

of system (5). The code coordinates of the 

satisfy the equations Pfi = 0, which are 

The solution which reduces to Uk+ when x = * and to uk- when x = - m 

is represented in the space u k by an integral curve of system (5) which 

connects singular points of this system. 

Let us now look at the (n - 1) Equations (4) which are satisfied by 

the coordinates of the singular points of system (5) 

B’i (ulr) -- UA’i (Uk) = Ci (i=l, . . . . n-1) (7 

The sum total of these equations defines a line. The coordinates of 

duj, an element of this line, are determined from the equation 

(EPij-- UA”ij) duj = 0 (i=l, . . . . n-l; j=l, . . . . n) (8) 

We shall assume that the equations which make up this system remain 

linearly independent when U = ao. This can always be attained by changing 

the numeration of the equations as aa is a simple root of Equation (2) 

and therefore n - 1 linearly independent variables can be found from 

Equations (3). 

&cause II is close to a,(uk), the direction of an element of curve(7) 
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in the neighborhood of point S, with coordinates uK + is close to the 
direction of an element of a curve determined by Equations (3). There- 
fore, at some section of curve (7) in the neighborhood of point S, there 
takes place a monotonic variation a,(uk)’ and the derivative in ao taken 
along the length of the arc of curve (7) differs from zero, i.e. the cor- 
responding derivative taken along curve (3) differs from zero. Because U 
is close to =~(ukt), on curve (7) it is possible to find a point at 
which U = aa( 

Let us look at the variation C”n I B’” - UII’~ along curve (5) 

(9) 

where duj are determined from Equations (8). &cause it is possible to 

take as du. minors of matrix 11 B”. . - UA”. 11 supplementary to the ele- 
ments of t e last row multiplied i$ ds, wl$re s is some parameter along I: 
curve (7), it follows from Equation (9) that 

In the case of points close to the surface ao(uk) = u if we neglect 
higher orders of differences U - ao, we obtain 

Therefore, when no = II 

because dac,/ds # 0 along curve (3), ,and therefore, also along curve (7) 

and because au is a simple root of Equation (2). 

Thus the derivative dC”,/ds changes sign and C”, attains an extremum 
value C,’ 
U, i.e. 

when, if we alter s, the value of aa goes through the value 
at the point at which curve (7) intersects the surface aa =U. 

The value C, E R’i(uk+) - UA’i(ak+) is sufficiently close to Cn* (be- 
cause point S, is close to surface a,(uk) = U), therefore, on the other 
side of the surface aa = U there will be a point S:, with the same 
value CnW = Cs as at point S,. The coordinates of this point represent 
values of uk- which satisfy the system of Equations (4). Evidently this 
solution is unique in the neighborhood of point S,, i.e. in this 
neighborhood on curve (7) there exists only one extremum of quantity C,“. 

Because points S, and S, lie on different sides of surface aa = II, 
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then at point S, we have u < co( u&) . If we fix the 
C 

values U, C,, C,, 

**at “-1’ values of C,, and C,, will be found as close as we like to 

C”* one of which is greater than Cn* and the other is less, such values 
that when C,, = C,,, there exist two points S, and S, whose coordinates 
turn out to be solutions of Equations (4) when-C, = C,,* these two points 
run together into one point S, whilst when C, = C,, system (4) has no 
solution in the neighborhood of point S. 

We now deal with the behavior of the integral curves of system (5) in 
the neighborhood of the singular points. If we linearize Fquations (5) 
in the neighborhood of one of the singular points Sr, we get 

Lij -g[ = p$*‘(s,) (11) 

where 

P* (S,) = P”ij (8,) AUK Auj, Auk = uk - uk (8,) 

If by a linear transformation of variables Au, we reduce the quadratic 
form P(S,) to a sum of squares, the number m of positive coefficients 
of the squares, called positive indices of inertia, is equal to the 
number of different inequalities a&) < U. 

In actual fact ‘if when U changes the indices of inertia of the 
quadratic form P’li j(S,) A ui A uj vary, then simultaneously the determinant 
1 P”i j(S,) 1 = \UA ‘ij (S,) - B ” i j(Sr) 1 should vanish. If U = ap(SJ , 

where 

rank o P 
is a simple root of equation IB”i .(S,) - uA”~~(SJ 1 = 0 then the 

the matrices II B”ij(Sr) - u,$“. .(s’,) I/ equals II - 1. Therefore 
when we represent P(S,) as a sum of s$ares only one of the coefficients 
vanishes. Because the matrix II A”. II is positive definite when U = m 
the positive index of inertia equa s n, and when U = - m it is zero. ‘i 
Therefore when we represent P(SJ as a sum of squares one of the posi- 
tive coefficients is replaced by a negative one, when U, on decreasing, 
goes through the simple root 

“R 
(S,). Multiple roots may be regarded as 

simple ones which run into eat other. 

We will demonstrate that if the positive index of inertia of the non- 

decaying quadratic form P = m, the integral curves which emanate from 
point Sr make up a surface of m dimensions*. 

* This statement follows from [3]; with the type of system of equations 

with which we are dealing, the proof is considerably simplified. 
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To do this we construct on the surface p(uk) = &sr) + E(E > 0) which 

in the neighborhood of point Sr can be represented by the equation 

PCS,) = a, the closed (m - l)-dimensional surfeco X,. lhe integral 

curves which emanate from points on the surface C, in the direction of 

increasing P create an m-dimensional surface 2,. None of these integral 

curves can enter point Srz because for points on the surface C, the in- 

equalities p(uk) > .@s,) are fulfilled whilst along the integral curves 

further increase in P takes place. Now suppose E --t 0 and all points on 

the surface 2, tend to coincidence with point S,. ‘Ihe surface C, then 

tends to some limiting surface 2, which is actually the m-dimensional 

surface consisting of integral curves which emanate from point Sr. In a 

similar manner it can be shown that there exists an Cn - ml-dimensional 

surface consisting of integral curves which enter this point. 

Now let us look at the surface P(uk) = G, G = const, in the space uk. 

The function P depends on the parameters U, C,, C,, . . . , C,. bcause 
everywhere in what follows al’1 these parameters except C,, will be re- 
garded as constant, to emphasise the dependence of the given surface on 
C, we Will in some cases write down its equation in the form Pfuk, CR, =G. 

We will say that two regions have one and the same topological type 

(homeomorphic), if one can be transformed into the other by a continuous 

transformation whose sign does not change. 

Evidently the topological type of space or region P(nk, CJ & G will 

not vary with change in G if here the surface P(u&, CJ = G does not go 

through any stationary points of the function P(uk, C,,>. In actual fact 

with infinitely small change in G it is possible to construct a trans- 

formation of the surface P(nk, CJ = G in the neighborhood P(uk# C,) > G, 

which is single signed and continuous if grad P(uk, CJ does not vanish 

on the surface @Uj, es> = G. In the same manner if the surface P(uk, 

CJ = C does not go through any stationary points of the function 

Ru,, C,) then with a sufficiently slow change in C,, the topological 

type of region P(ukt CJ > G will not change. 

If G, on increasing, goes through stationary values of P(Sr) corre- 

sponding to point S,. with a nondecaying quadratic form P(S,), then as 

is known from f9j the Betti number of (m - 1) dimensions increases by 

one** or the m-dimensional &tti number of region P(uk) > G decreases by 

l * The Betti number and the homology are regarded everywhere in this 
work only in terms of mod 2, and this will not be repeated each time 
in what follows for the sake of brevity, The l-dimensional Betti 
number of any sPace or region will be called the maximum number of 
homologously independeint l-dimensional cycles which can be constructed 
within this region, Cycles refer to closed surfaces (surfaces having 
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one, where m is a positive index of inertia of the quadratic form P*(S,). 
In the first case point Sr is called s point of the growing or increas- 
ing type; in the second, it is called a point of the decaying type. 

We will consider that when G, upon changing, does not go through 
stationary values of the function P(u,), cycles which constitute a 
wholly homologously independent system, vary within region P(u,> 3 G 
when G changes continuously (in an arbitrary manner). How this continu- 
ous transformation takes place is irrelevant as far as we are concerned 
for if G does not go through stationary values, all cycles attained by 
continuous deformation from any one are homologously identical. Cycles 
which with G = P(SJ do not go through point Sr may be regarded as vary- 
ing in a continuous manner when I; goes through the values P(S,). They 
will then remain homologously independent, i.e. region P(uk) h G de- 
creases when G is increased. 

The full system of homologously independent cycles of region P(uk)> G 
can always be so chosen that for values of G close to P(S,ls all cycles 
with the exception possibly of one, lie outside a fairly small region 

surrounding point S . This cycle is additional to the full system of 
cycles, when the point Sr is a point of the increasing type or it decays 
from this system if point Sr is a point of the decaying type. 

If the cycle of the greatest number of dimensions RL - 1 lying on sur- 
face P(S,) = E which represents the surface P(uk) = G, in the neighbor- 
hood of point Sr, is not homologously zero in region P(u& > G, it is 
not homologous with the other cycles which constitute a total or fully 
homologously independent system, and it may be taken as a cycle which is 
supplementary to this system when G goes through value P(Sr). 

If this (m - l)-di~nsional cycle is homologously zero in region 
P(u,) > G the r-dimensional surface, which contains this cycle as a 

no boundaries). The sum total of I-dimensional cycles which lie in 
any region is called 8homologously indeRendentm if in this region it 
is not possible to construct an ( 1 + l)-dimensional space. whose 
boundary consists of these cycles (not necessarily all of them). An 
I-dimensional cycle is called homologously zero if there exists an 
(I + l)-dimensional surface whose boundary it appears to be. For 
further details refer to [lo]. 

le will term a system of homologous mutually independent cycles 
lying in a given region “full” if any cycle not belonging to this 
system is homologouely dependent in the given region on cycles which 
constitute this system. 
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boundary and lies in region P(uk) >G, when G < P(Sr) can be completed 
up to an m-dimensional cycle, by adding to it a surface which describes 
in space an (m - l)-dimensional cycle, when with decreasing G it tends 
towards point Sr . An m-dimensional cycle constructed in this manner is 
not homologously zero in region P(ukl > G when G < P(Sr). 

If it turns out that there exist several m-dimensional’cycles which 

go through the neighborhood of point Sr and they are not homologous with 
respect to each other it is always possible to choose a system of cycles 
which is homologously equivalent to these cycles and which contains only 
one m-dimensional cycle which passes through the neighborhood of point 
S, (one can take as this cycle any of the m-dimensional cycles which go 
through the neighborhood of point S,). We will therefore consider that 
the total system of independent cycles in region P(ukl h G when G < P(SJ 
contains only one m-dimensional cycle which passes through the region 
close to point Sr, and which indeed represents a cycle which emanates 
from the full system of homologously independent cycles, when G goes 
through value P(Sr) (for brevity we will say that it breaks away at point 

S,) - 

Notice that if any m-dimensional cycle breaks away at point Sr any 
cycle which is homologous thereto will break away at this point and con- 
versely if any m-dimensional cycle does not break away at point Sr then 
this is true for all cycles which are homologous thereto. This follows 
from the fact that an m-dimensional cycle breaking away at point S when 
C = P(S,) cannot be homologously dependent on cycles which go through 
this point, i.e. no surfaces exist whose dimensions exceed m and which 
lie in region P(uk) > P(Sr) and pass through point Sr. 

Let us look at regions 1 and 2, determined respectively by inequal- 
ities P(uk, Cal) > G and P(uk, Cn2) > G, where the values of C,, and C,, 
which were deduced before, are sufficiently close to C,*. 

Then if G varies over an interval of values containing G+ = P(S, Cl,*), 

the surface P(uk, C,,) = G goes through two stationary points S, and S, 
which lie in the neighborhood of point S,whilst the surface P(uk,C,,) =G 
when G varies in the same interval, does not touch the stationary points 
in the neighborhood of point S. 

Let us assume that for C, enclosed between C,, and Cn2, the surface 

p(u,, C,> = G does not go through any other stationary points, that is 
apart from S, and S,, when G varies over the given range of values. 

Then a change in the topological type of region P(uk, C,) >G can 
take place only when the surface P(uk, Cal = G goes through points S, 
and S,. 
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If the above assumption is not fulfilled it is always possible to 
regard the finite neighborhood of point S given by inequality F(uk) > 0, 
as not containing other stationary points apart from S, and S,, and in 
all the discussions that follow it is possible to watch for changes in 
the topological type of region P(u,, C,) > C, F( uk) 2 0. 

Therefore, if G f G* and Cn, is sufficiently close to C,,, regions I 

and 2 then have exactly the same topological type. If we fix Cn, and Cn, 
and vary G, the topological type of region 1 will change as G goes 
through the stationary values P(S,, C,,) and P(S,, Cnl) whilst the topo- 
logical type of region 2 will not change. Therefore the regions under 
discussion will have the same topological type for G < P(Si, C,r) and 
for G > P(Sf, Cn,), where i, f = 1, 2, so that P(S,, Cn,) < P(Sf, Cnl) < 
It follows from this that changes in l3etti numbers of region 1 when 
G = P(S,, Cn,) and G = P(S,, C,,) should compensate each other. 

We will demonstrate that point Sf is a point of the decaying type. If 
this were not so, when G went through the value P(S , Cnl) the totality 
of homologously independent cycles of region i woul f4 be supplemented by 
the new cycle R,, and this cycle can be so chosen that for values of G 
sufficiently close to P(Sf Cnl), it lies within an arbitrarily small 
neighborhood of point Sf. 

Because when G > P(Sf, Cnl) regions 1 and 2 possess the same topo- 

logical type, in region 2 of the cycle constructed above another corre- 
sponding cycle R, can be placed which is not homologously zero within 
this region. 

If the values of Cn, and Cn, are sufficiently close, the cycle R, can 
be so chosen that it will be close to R, and therefore when values of G 
are close to P(Sf, Cn,) it will be in a small neighborhood D of point Sf. 

With decreasing G region 2 will ex and; and since in the region with 
which we are dealing 1 grad P(u,, Cnl) P is bounded, the velocity is not 
zero and has a lower bound. Therefore with only a small decrease in G 
the whole neighborhood D will belong to region 2 and the cycle R, will 
become homologous to zero. This h owever is not possible because the 
topological type of region 2 cannot alter. 

It follows that at points Si and Sf the function P(u,, Cnl) takes on 
different values, since if this were not so either of them might be 
taken as Sf, and therefore both must be points of the decaying type, SO 

that when G passes through this doubly critical value the topological 
type of region 2 should change. Ilecause the change in Betti numbers of 

region 1, when G goes through stationary values, should be reversible, 
it follows that point Si is a growing type of point. 
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Suppose that at point Si the positive index of the quadratic forms 

P*(S,, C,l) equals m. Men G goes through the value P(S,, Cnl) the whole 

system of region 1 cycles is supplemented by one (m - l)-dimensional 

cycle. When G goes through the value P(S , Cnl) from the whole gamut of 
homologous independent region 1 cycles x t e (m - l)-dimensional cycle 

should vanish. It follows from this that the positive index of inertia 

of the quadratic form P(Sf, Cnl) equals m - 1. 

If we know the positive indices of inertia of the quadratic forms 

P*(Si, C,,) and P*(Sf, Cnl) it is possible to conclude that U > a,(Si) 
and I! < a.(Sf), i.e. that i = 1, f = 2, n = a and P(S,, Cnl)< P(S,, C,*). 

We will show that an (a - 1)-dimensional cycle arising when G = P(S,, 
C,,) in the neighborhood of point S, , goes through point S, when 

G = PO’,, C,,), whilst with further increase of G it breaks away**. If 

this cycle did not break up at point S, then when G > P(S,, Cn, in region 
I there would exist a cycle not homologous to zero which is placed or 
located in some region which contains points S, and S,, the dimensions 
of which tend to zero when C”, - Cn*, G - G* on condition that 

G ’ KS,, C,J. 

Actually as an example of a cycle arising or generated at point S, 
one can take the cycle lying on the surface P(u,) = G. If when G changes 
this cycle deforms along the vector grad P(u,) and remains on surface 

P(uk) = G, this deformation will be continuous (because in accordance 

with the assumption the cycle cannot go through point S, and it will not 

extend beyond the limits of a fairly small region which contains points 

S, and S,. Because when G > P(S,, Cnl) regions 1 and 2 are of the same 

topological type and the boundaries of these regions are as close as we 

like to each other, if Cn, and C,, are sufficiently close to each other 

then in region 2 there should also exist a cycle not homologous to zero, 

in some small region containing points S, and S,. However this is im- 
possible because in this case with only small decreases in G the topo- 
logical type of region 2 would change. 

It now follows that an (a - l)-dimensional cycle, arising for G = 
P(S,, C,,) in the neighborhood of point S, with G = P(S,, C,,), goes 
through point S,. Ihis situation does not depend on how the given cycle 
has deformed when G has changed from P(S,, Cnl) to P(S,, Cn2), for if 
any cycle breaks up, then all the cycles break up which are homologous 
thereto. 

l * In the three-dimensional case (n = 3) this statement becomes self 

evident from the geometry of the surface P(uk) = G (see [Al. 
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A cycle I(G) can be chosen as an (a - l)-dimensional cycle which is 
not homologous to zero in region 1 and arising for G = PfS,, Csl), at 
point S,, and it is the intersection of the surfaces made up of the 
integral curves emanating from point S, with the surface P(u,, C,,) = G. 
The deformation of this cycle is given by Equations (5) and is continu- 
ous over all finite points of space which are not stationary points of 
the function P(uk, C,,). 

On condition that iL. .I # 0 the integral curves of Fquation (9) in any 
bounded, closed region hike a finite angle with a surface P(u,, Cnl) = G. 
Therefore if we choose the difference P(S,, C,,,) - P(S,, Cnl) to be 
sufficiently small (and this is allowed for by the closeness between C,, 
and Cn2) it is possible to show that the integral curves e~nating from 
point S, as G varies within the limits P(S,, Cnl) < G < P(S,, C,,f will 
not go outside the previously given region. 

Resides, when G is varied over the given interval the surface P(u,, 

Cd = G does not go through the stationary points of the function 

p(u,, C,,). Therefore according to what has been said the cycle IX (G) 
for G = KS,, C,l) goes through point S,. 

It follows that there exists at least one integral curve which con- 

nects points S, and+S2. This integral curve is the continuous solution 
which reduces to uk when x = m and to uk- when x = - 0~. 

The above proof is still valid for shock waves of finite amplitude if 
the shock wave corresponds to a transformation S, - S, such that for 

given 0, C,, C,, . . . , C, between P(S,) and P(S2) there are no other 
stationary values of the function P(uk) and the cycle Z(G) cannot break 
up at an infinitely distant point when G varies between the limits 
P(S,) < G < P(S,). The latter condition may be fulfilled either through 
the properties of dissipation coefficients Lij or by the surface 

Nu,) = G for P(S,) < G < P(S,) not containing the point at infinity. 

Suppose now that L . - 0. ** 
vectors {z .) and (L. .E”.> 

If the cosine of the angle between the 

d oes not tend to zero for any values of zi, 
then the &sine of ihe’angle between vectors (hijyi) and (yj) will not 
tend to zero for any value of yi, where A ij denotes elements of the 
matrices which are inverse to 11 Lij 11. To prove this it is sufficient to 

put y = LijZj. 

l * In the case of magnetohydrodynamics with dissipation given by diagonal 
matrix L.. such a limiting transformation in the solution represent- 
ing the jiructure of a shock wave is dealt with in [II]. 
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Equations (5) and (6) can be written down thus 

du. 
-’ -- AijP’j, 
dE 

It follows that the integral curves for Lij - 0 will make a finite 
angle with the surfaces P(IJ~) = G. Therefore on the integral curve ui 
they will be continuous functions of P, and when P varies between the 
limits P(S,) < P < P(Sz) they will not go out of a given region Q which 
contains points S, and S,. Besides it is possible to isolate a S-region 
close to singular points S, and S, such that for P differing from P(S,) 
and PfS,) by less than E, the corresponding point on the integral curve 
connecting Sl and S, lies in one of these &regions. Let us look at a 
section of the integral curve corresponding to changing P over the range 
P(S,) + E 4 P G P(S& - E. As this interval does not contain stationary 
values of the function P, in region Q from which the g-regions of 
singular points have been isolated, the following inequality is fulfilled 

If all the Lij - 0, then for any fixed vector {zi) the modulus of 
vector {hijzj) tends to infinity. This follows from the fact that for any 
fixed vector iy ,) the modulus of vector (Li jyj) tends to zero. As in this 
case the cosine of the angle between vectors {h..r.) and {zi) does not 
tend to zero for any value of {zi) we have 

If J 

g = &jP’{P’j 4 00 

and variations < over the given section of the integral curve tend to 

zero 

m%)--E 

Ea-El= \ dP -to 
P(S*)ffi 

AijP’,P’j 

Thus the length of a section of minimum length which contains all the 

points in which at least one value of Ui differs from uif and ui^ by an 
amount greater than 6, tends to zero when L i j - 0. 

If together with Li. the cosine of the angle between vectors 
{hijPSj) and {P’ i1 tends to zero, the expression A ijP’ iP’ may fail to 
tend to infinity and the difference Ej2 - .$I may remain fiiite or it may 
tend to infinity. In this case the modulus of the vector (A. .z .) for any 
fixed value of {zi) tends to infinity; from the first E+atj&r’(l2) it 
follows that at each point of section [$c~<~I 
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if t2 - cl does not tend to zero when L.. - 0. The solution may possess 

for instance a quasi-periodic character’iver the section Cc,, Q, 
whilst the period tends to zero when L.. -( 0. An example of such a limit- 

‘/ 
ing transformation can easily be constructed for the case when the matrix 
11 Lij 11 is such that L.. = - L.. and when i # j Cl21 , where the limiting 
transformation ‘ii -+ Oais regar ‘A ed in magnetohydrodynamics as a general- 
ized Ohm’s law, or when the matrix 11 L.. If is orthogonal. However, if 
the matrix 11 L . . I] is syaznetrical then’ihenever any of its elements tend 
to zero the diiference $ z - c1 tends to zero because in this case 
AijZiZj - m for any choice of z i, 

In some cases the reduction of a given concrete system of partial 
differential equations to form (1) may be rather more difficult thsn ob- 
taining ordinary equations in form (51, which are satisfied by the solu- 
tions which depend on c = Ut - n (in the latter case it is convenient to 
choose as P the flux of entropy - see for instance [8I where equations 
which describe steady magnetohydrodynamic flows in form (5).&e derived. 
Therefore for convenience in presentation we will formulate the result 
obtained for the system of ordinary differential equations of form (5). 

Let the function P(uk) depend continuously on a parameter q and 
suppose that for q < q+ function P(u,) has stationary points S, and S,, 
in the neighborhood of which the function P(u,) is represented by non- 
decaying quadratic forms relative to the deviation of the variables from 
their values at points S, and S2. 

Let the points S, and S, tend to coincidence when q * q’, and this 
takes place at some point S, whilst it is possible to separate a region 
round point S such that for values of q close to q* there are, in this 
region, no other stationary points of function P(uk) except S, and S,, 

Suppose when q > q* in this region there are no stationary points of 
function P(u&). %en if q is close t;o q*, whilst q < q*, there Will 
exist at least one integral curve which connects the singular points S, 
and S, of system (5). 

‘I&e author is indebted to SK. Cmdunov, who was responsible for the 
quadratic form designation P*(Srf which has been employed in this paper 
and to G.Ia. Liubarskii and S.S. Ryshkov for their help in discussing 
the contents of the present work. 
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